

 	

 	

		
	
	
		

	
	
	 Mot exact
	 	
	 10
	
25
	
50
	
100

Résultats par page
	

Index des mots-clés

	

AGENDA PERSONNEL

ALBUM PHOTO (Script)

ANTI SPAM

APICULTURE

BOISSONS (Recettes)

BREDELE

C++

CADRE

CHARLOTTE AUX FRUITS

CODAGE ADRESSES MAIL

CODE 2 DE 5 ENTRELACE

CODE 3 DE 9

CODE 128

CODE PDF417

CODES BARRE

CODE POSTAL

CODES VIDEOTEXT

CONFITURES

CONGOLAIS

CONSERVES (Recettes)

CORNICHONS AU VINAIGRE

COUARAIL

CUISINE (Bases)

CYBERMUT

DADANT

DATAMATRIX

DDE

DESSERTS (Recettes)

DOUBLE NAT

DYNDNSUPDATE

EAN 13

EAN 128

ELECTRONIQUE

ENTREES (Recettes)

ENVOI DE SMS

ESPACE MEMBRE

EURO

EXEMPLES VB6

FAVORIS

FONCTIONS

FONCTIONS EN C++

GUACAMOLE

IMPRIMANTES RESEAUX

INSTANCE UNIQUE

KIT VB4

LANGSTROTH

LEGUMES (Recettes)

MADELEINES

MAISONS

MAQUEREAUX AU VIN BLANC

MAQUEREAUX (Rillettes)

NMEA

NOUGATINE

PAIN

PDF417

PHP

PIC

PLANS DE MAISON

PATISSERIE (Bases)

PLANTEUR

PLATS COMPLETS (Recettes)

POISSONS (Recettes)

PROCEDURES

PROGRAMMATION

RECETTES DE CUISINE

RESSOURCES RESEAUX

R.I.B.

ROUTINES

RUCHE

SALADES (Recettes)

SAUMON EN CROUTE

SCRIPTS

SITES

SLICE

SMS

SOUPE DE COURGE

TABLE PERIODIQUE

TATIN (Tarte)

USB

VIANDES (Recettes)

VIDEOTEXT

VISUAL BASIC

VOIRNOT

WNTIPCFG

 	

		
	
	
		

	
	
	 Mot exact
	 	
	 10
	
25
	
50
	
100

Résultats par page
	

 	
 I
N
D
E
X

		

			

 The PDF417 code

			

			

			
			
 			
				 	
 			
				
	
				 Version francaise
				

				
			

		
	 This code is part of the family of 2-dimensional codes, it's in fact a code of several lines which can encode
			up to 2700 bytes what explain its name "Portable Document File". The encoding is done in two
			stages : first the datas are converted into "codeword" (High level encoding) then those are
			converted to bars and spaces patterns. (Low level encoding) In addition, a multi-level error correction system
			is included, it allows to reconstruct badly printed, erased, fuzzy or torn off datas. In the
			remainder of this presentation, the expression "codeword" will be shortened to CW and
			"Reed-Solomon code" to RS.
			The general structure.

 	The width of the finest bar is called the module.
	Thereafter a bar module is symbolized by "1" and a space module by "0".
	The code consists of 3 to 90 rows.
	A line is composed of 1 to 30 columns of datas and its width goes from 90 to 583 modules with the margins.
	
				 Maximum number of CW per bar codes : 928 including 925 for datas. (1 for the length
					descriptor and 2 at least for the correction of errors.)
				
	If necessary a mechanism called "Macro PDF417" allows to distribute more datas on several bar codes.
	There are 929 CW including 900 for the datas, they are numbered from 0 to 928.
	The errors correction levels goes from 0 to 8. The correction comprises 2 (on level 0) to 512 (on level 8) RS.
	
				 The row consists of a start character, a left side CW, 1 to 30 CW of datas, a right side CW
 and a stop character. There must be a white margin of at least 2 modules on each side.
				
	
				 Filling MCs (We will use for example "900") can be inserted between the data MCs and the
 correction RS, these must be at the end.
				
	
				 The first MC indicates the total number of MCs of the code including
 the datas, the filling MCs and itself but excluding the correction RSs.
				
	
				 Example of a code with 14 MC of data, a 15th MC to indicate
 the total, one filling MC and 4 correction RS. (Level 1)
				

 	

 D

 é

 b

 u

 t

 	 G1
	 D15
	D14
	 Dr1
	

 F

 i

 n

	 G2
	 D13
	 D12
	 Dr2

	 G3
	 D11
	 D10
	 Dr3

	 G4
	 D9
	 D8
	 Dr4

	 G5
	 D7
	 D6
	 Dr5

	 G6
	 D5
	 D4
	 Dr6

	 G7
	 D3
	 D2
	 Dr7

	 G8
	 D1
	 D0
	 Dr8

	 G9
	 C3
	 C2
	 Dr9

	G10
	C1
	C0
	Dr10

				D15 = length descriptor (16 in this sample)
	D0 = padding
	D1 to D14 = datas
	G1 to G10 = left side CW
	Dr1 to Dr10 = right side CW
	C0 to C3 = error correction, level 1

 Low level encoding.

 	
				 Each CW is made of 17 modules, containing 4 bars and 4 spaces (Code name comes from there !) and it
					start by a bar. Bars and spaces width is 1 to 6 modules. (Except for start and stop characters)
					Sample :

					
					

					 soit la formulation suivante : 111 0 1 0 1 000 111 0000
					

				
	Start character is : 11111111 0 1 0 1 0 1 000
	Stop character is : 1111111 0 1 000 1 0 1 00 1 (Here there is a 5th bar, thus 18 modules.)
	There are 3 distinct tables for encoding the 929 CW.
	The 3 tables giving the patterns of the 929 MC begin like this :

	First table
	Second table
	Third table
	
						 Exhaustive tables file :

	111 0 1 0 1 0 111 000000
	11111 0 1 0 1 0 11 00000
	11 0 1 0 1 0 11111 00000

	1111 0 1 0 1 0 1111 0000
	111111 0 1 0 1 0 111 000
	111 0 1 0 1 0 111111 000

	11111 0 1 0 1 0 11111 00
	1111 0 1 0 1 00 1 000000
	1 0 1 0 1 00 1111 000000

	111 0 1 0 1 00 111 00000
	11111 0 1 0 1 00 11 0000
	11 0 1 0 1 00 11111 0000

 	
				 Each row use only one encoding table, this table will be used again 3 rows further. Sample : Row 1 --> table 1,
					row 2 --> table 2, row 3 --> table 3, row 4 --> table 1,etc. We have the formula : table number
					= ((row number MOD 3) * 3)
				

 High level encoding.

 	
				 Thereafter we'll use operators : + --> addition, x --> multiplication,
 \ --> integer division, MOD --> remainder of the integer division.
				
	
				 Datas are compacted into CW according to 3 modes which are conceived according to their efficience compared to the
					datas type. Default mode is "Text" mode.
				

	Compaction mode
	Datas to encode
	Rate compaction

	"Byte"
	ASCII 0 to 255	1,2 byte per CW
	"Text"
	ASCII 9, 10, 13 & 32 to 127 	2 characters per CW
	"Numeric"
	Only digits 0 to 9	2.9 digits per CW

 	
				 CWs numbered 900 to 928 have a special meaning, some allow switching from one mode to another in order to
					optimize the code.
				

	CW number :
	Function

	900
	Switch to "Text" mode

	901
	Switch to "Byte" mode

	902
	Switch to "Numeric" mode

	903 à 912
	Reserved

	 913
	Switch to "Byte" only for the next CW

	914 à 920
	Reserved

	921
	Initialization

	922
	Block termination for PDF macro

	923
	Field identification sequence in a PDF macro

	924
	Switch to "Byte" mode (If number of bytes multiple of 6)

	925
	ECI custom identifier

	926
	ECI general identifier

	927
	ECI identifier for character set or code page

	928
	Block start for PDF macro

 	The "Text mode have 4 sub-modes :
 	Uppercase
	Lowercase
	Mixed : Numeric and punctuation
	Punctuation

					 The default sub-mode is "Uppercase", in this sub-mode
 2 characters are encoded in each CW, here is characters tables :
					

 	Value	Uppercase 	Lowercase 	Mixed	Punctuation
	0	A	a	0	;
	1	B	b	1	
	2	C	c	2	>
	3	D	d	3	@
	4	E	e	4	[
	5	F	f	5	\
	6	G	g	6]
	7	H	h	7	_
	8	I	i	8	` (Quote)
	9	J	j	9	~
	10	K	k	&	!
	11	L	l	CR	CR
	12	M	m	HT	HT
	13	N	n	,	,	
	14	O	o	:	:	
	15	P	p	#	LF
	16	Q	q	-	-
	17	R	r	.	.
	18	S	s	$	$
	19	T	t	/	/
	20	U	u	+	“
	21	V	v	%	|
	22	W	w	*	*
	23	X	x	=	(
	24	Y	y	^)
	25	Z	z	PON	?
	26	SP	SP	SP	{
	27	MIN	T_MAJ	MIN	}
	28	MIX	MIX	MAJ	' (Apostrophe)
	29	T_PON	T_PON	T_PON	MAJ

 6 switchs are included in these tables, they allow to change the sub-mode :

	 UPP : switch to "Uppercase"

	 LOW : switch to "Lowercase"

	 MIX : switch to "Mixed"

	 PUN : switch to "Punctuation"

	 T_UPP : switch to "Uppercase" only for next character

	 T_PUN : switch to "Punctuation" only for next character

	 	Each CW encode 2 characters ; if C1 and C2 are the values of the two characters, CW
 value is : C1 x 30 + C2

					If it remains an alone character, we add to it a padding switch, for instance T_PUN.
 	
 Sample, sequence to encode : Super !

								 S : 18, LOW : 27, u : 20, p : 15, e : 4, r : 17, SPACE : 26, T_PUN :
									29, ! : 10
that is 9 characters, we'll add a T_PUN for the padding.
CW1 = 18 x 30 + 27 =
 567
CW2 = 20 x 30 + 15 = 615
CW3 = 4 x 30 + 17 = 137
CW4 = 26 * 30 +
									29 = 809
CW5 = 10 x 30 + 29 = 329
The sequence is consequently : 567, 615, 137, 809, 329
								

				
	
				 The "Byte" mode allow to encode 256 different bytes, that is the entire extended ASCII table.

		 If the byte number is a multiple of 6, we use the CW numbered 924 to switch to "Byte" mode; if the byte
					number is not a multiple of 9 we use the CW numbered 901 for switching.

					Coding consists has to transform 6 bytes in base 256 to 5 CW in base 900. To carry out the conversion :
 	
			 		 Take the bytes by group of 6; let X5 to X0 their decimal values.
				 		(X0 is the less significantcharacter)
				
	
	 			 Compute the sum S = X5 x 2565 + X4 x 2564 + X3
		 			x 2563 + X2 x 2562 + X1 x 256 + X0
			 	
	
				 Let's compute the CWs : CW0 = S MOD 900, new value of S : S = S \ 900, CW1
 					 = S MOD 900 ... and so forth to CW4 (CW0 is the less significant CW)
 	 			
	
		 	 	 Bytes which remains after the conversion of the groups of 6 are taken just as they are :
			 	 	1 byte = 1 CW of same value.

				

 	
 Sample 1 : word to encode : alcool

					 		 The sequence of bytes (in ASCII) is : 97, 108, 99, 111, 111, 108

						 		S = 97 x 2565 + 108 x 2564 + 99 x 2563
 + 111 x 2562 + 111 x 256 + 108 = 107 118 152 609 644

				 CW0 = 107 118 152 609 644 MOD 900 = 244

 								S = 107 118 152 609 644 \ 900 = 119 020 169 566

	 							CW1 = 119 020 169 566 MOD 900 = 766
S = 119 020 169 566 \ 900 = 132 244 632

		 						CW2 = 132 244 632 MOD 900 = 432

			 					S = 132 244 632 \ 900 = 146 938

				 				CW3 = 146 938 MOD 900 = 238

					 			S = 146 938 \ 900 = 163

						 		CW4 = 163 MOD 900 = 163

							 	The sequence including the switch is consequently : 924, 163, 238, 432, 766, 244
 							

 Sample 2 : word to encode : alcoolique

			 				 The sequence of bytes (in ASCII) is : 97, 108, 99, 111, 111, 108, 105, 113, 117, 101

				 				The first 6 bytes are coded like above and we add 105, 113, 117 and 101

					 			The sequence including the switch is consequently : 901, 163, 238, 432, 766, 244, 105, 113, 117, 101
						 	

	
	 	 	 The "Numeric" mode is a conversion from base 10 to base 900

	 To carry out this conversion :
			

	Take the digits by group of 44 (or less for the rest)
	Add the digit 1 ahead, it will be removed by the decoding procedure
	Make the change of base like for the "Byte" mode
	Each group of 44 digits give 15 CWs
	
				 The smallest groups give a number of CW witch is : Number of digits \ 3 + 1

			 Sample : 10 digits give 10 \ 3 + 1 = 3 + 1 = 4 CWs
 				

 	
 Sample, sequence to encode : 01234

					 	 There will be thus 5 \ 3 + 1 = 2 CW
Add a "1" ahead : 101234
CW0 =
						 	101 234 MOD 900 = 434

							 S = 101 234 \ 900 = 112
CW1 = 112 MOD 900 = 112
The sequence is consequently : 112, 434
	 					

 	
			 Left and right side CWs are computed according to the table used
 for the current row.
To obtain the CW value, make the following calculation : (Row
 Number \ 3) x 30 + X with X taken in the following table. (First row is row number 0)
			

	Table used to encode
the CWs of this row
	X for the left side CW
	X for the right side CW

	1
	(Number of rows -1) \ 3
	Number of data columns - 1

	2
	(Security level x 3)
+ (Number of rows -1) MOD 3
	(Number of rows -1) \ 3

	3
	Number of data columns - 1
	(Security level x 3)
+ (Number of rows -1) MOD 3

 Errors detection and correction.

	Error detection system use 2 CWs and correction system use some between 2 and 510
	
		 The correction system is based on "
		
				Reed Solomon codes
			
			" which enjoy the math students and terrify others ...
		
	
		 Number of CWs to add depend of the correction level used, because of the limit to 928 CWs in a bar code
			 (1 of which for the sum of CWs) the maximum level is limited by the number of data CWs. The number of CWs
			 that the error correction algorithm can reconstitute is equal to the number of CWs required by the
			 correction system : this is not magic but it's mathematical !
			

	
 Level

 	

							 Number of CWs required by the correction
system,
 2 of which for the detection (2level + 1)
							

 	
 Maximum number of data CWs

	0
	2
	925

	1
	4
	923

	2
	8
	919

	3
	16
	911

	4
	32
	895

	5
	64
	863

	6
	128
	799

	7
	256
	671

	8
	512
	415

					The advisable correction level depend on the number of data CWs :

	Number of data CWs
	Advisable level

	1 à 40
	2

	41 à 160
	3

	161 à 320
	4

	321 à 863
	5

 	
				 Reed Solomon codes are based on a polynomial equation where x power is 2s+1 with s =
				 error correction level used. For sample with the level 1 we use an equation like this :
					a + bx + cx2 + dx3 + x4 The numbers a, b, c and d are the factors of
					the polynomial equation.
		
	
				 For information the equation is : (x - 3)(x - 32)(x - 33).....(x -
					3k) (with k = 2s+1) We develop the polynomial equation and we apply a MOD 929
					on each factor. These factors have been pre-computed for the 8 equations corresponding to the 8
					correction levels. You can see the
		 factors file.
					We can also calculate them.
		

				 Here in Basic the algorithm to calculate the coefficients :

					Let s the correction level used,
					k = 2s+1 the number of RS.
					

 Now, still in Basic, the algorithm for calculating RS codes.

 	
 Find all the RS code calculations of the different 2D barcodes in Visual Basic 6.

 It is a ZIP file without installation :

			
			Those who have read and understood the codes of Reed Solomon will find themselves there ; for the few
			ignorant who have not understood everything (like me!) It will be enough to apply the "recipe" by using
			the codes obtained in the reverse order (last to first).
			

		 Bar code making.

 Since we can create the bar code pattern it remains us to draw it on the
 screen and to print it on a paper sheet. Two approaches are possible :
 	
	 			The graphic method where each bar is "drawn" like a solid rectangle. This method makes it possible to
		 		calculate the width of each bar to the nearest pixel and to work on multiples of the width of a pixel of
			 	the used device. This gives good accuracy especially if the device has a low density as is the case of
			 screens and inkjet printers. This method require special programming routines and does not allow to make
 			 bar codes with a current software.
	 	
	
			 The special font in which each character is replaced by a bar code. This method allow the use of any
			 software like a text processing or a spreadsheet. (For example LibreOffice, the free clone of MSoffice !)
 			 The scale settings according to the selected size can bring small misshaping of the bar drawing. With
	 		 a laser printer there's no probs.
	 	

 It seems there is no free font for PDF417 on the net. I've decided consequently to draw this font and to
			propose it for download. Because there's 929 CWs with 3 alternatives for each one obligate us to divide
			the 17 bits of a CW in several parts. But divide by 17 ... hmmm ... a trick is necessary. If we considere
			that the first bit is always "1" and the last one "0", we can imagine a separator like "01" and the remain
			is only 15 bits in each CW; we can then divide these 15 bits into 3 parts. There will be then 25
			= 32 possible groups affected to 32 characters of the font. The encoding software is in charge to transform
			the 3 groups of each CW into a 3 characters string.
The font will contain thus the following
			characters :
 	
	 		 Character A (ASCII : 65) to F (ASCII :70) and a (ASCII
 : 97) to z (ASCII :122) for the 32 groups having a formula "00000" to "11111"
		
	Character * (ASCII : 42) for the separator having a formula "01"
	
		 	 Character + (ASCII : 43) for the row start character without its last 0, formula
			 	"11111111 0 1 0 1 0 1 00"
 			
	Character - (ASCII : 45) for the end row character without its first 1, formula
		 	 "111111 0 1 000 1 0 1 00 1"
			

 The string to send to the printer will look something like this : +*gfA*jhD*BAl*gCt*hjk*- and
 this for each row.
			

 The "pdf417.ttf" font

 This font contains the 35 patterns describe above. The start row and end row codes embed a 2 modules
			margin. The height is equal to 3 modules which is the most usual size.
 	

 Copy this file

						in the font directory,

						often named :
C:\WINDOWS\FONTS

 Encoding a pdf417 bar code

 The software will evolve with 4 steps :
 	Compaction of the datas into the CWs by using of the different methods and trying to optimize.
	Calculation of the correction CWs according to the selected security level.
	Splitting by rows and addition of left side and right side CWs.
	
				 Transformation of each CW into a 3 characters string and addition
 of separators, start row character, end row character and carriage returns.
				

 Because of the interaction between the different compaction modes and
 the different sub-modes of the "text" mode it's difficult to make
 a 100% optimization. Thus the software will split the string into "parts"
 having the type "numeric", "text" or "byte" afterwards
 it will change some parts for an other mode if the overload due to switch CWs is
 greater than the compaction gain. We'll can't make allowance for all the parameters
 like paddings, gain due to perfect multiple of 6, uni-character switch
 or the switchs between the different sub-modes of the text mode : one would need for that
 several thousands of programming lines.

 Another difficulty comes from the size of the wielded numbers, for example the "Modulo 900" operation
			applied on a 44 digits number generate an unavoidable overload error; the software will have to carry out
 this calculation step by step.
			

 A small program to test all that

 	
				 	
 	
						 Here is a small program

							written with Visual Basic 6.

							The setup file copy the

							program, the Visual Basic

							dependencies, the source

							files and the font.
 	
							

 Setup file :

							 	
								
								

	
 ZIP file without setup :

								
								
								

			The PDF417$ function have about 500 lines, I thus don't reproduce it here, you can retrieve it in the
			"form1.frm" file which is with the above program ; with setup program, the "form1.frm" file is in the
			program directory, "sources" sub-directory.
The function call is like this : result$ =
			pdf417$(String$, Security%, ColNb%, ErrCode%)
with the string to encode in String$, correction level
			in Security% (-1 = auto.), ColNb% for the number of data columns in a row (<1 = auto.) and ErrCode% for
			retrieving an eventual error code. these 3 last parameters are not required and are passed by references ;
			after the function return they contains the really used values. Values of ErrCode% after the function
			return :
 	1 : String$ is empty
	2 : String$ have too many datas, we go beyond the 928 CWs.
	3 : Number of CWs per row too small, we go beyond 90 rows.
	
				 10 : The security level has being lowers not to exceed the 928 CWs. (It's
 not an error, only a warning.)
				

 It is enough now to display or to print the chains result$ with the pdf417 font for example in a text
			processing. The Word users will be able to even integrate the pdf417$ function in a macro to automate the
			treatment. To achieve all the treatments in a single function, I had to use "Gosub"
		 instead of functions with parameters ; I can already hear the programming esthetes screaming sacrilegious !

				

		 Do you like this page ?
			
			

			

			 Is it useful to you ?

		

 Click here !

		

		

